New HTS superconductors + integrated high-B physics
enable an innovative strategic vision for

US leadership in accelerated fusion energy development
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A strategic plan should accelerate fusion development by
considering critical knowledge gained in past decade
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Key Observations
1. Large size - risks in cost and schedule

ITER successful fusion gain > 20 years away Evolved
“At some point delay is equivalent to failure”
FESAC 2007 Gaps report® Strategy

Strategic | Small +
2. Superconductors evolved (G-8) Input High-B +

HTS! tapes allow ~ double B field

Superconductor
-> Steady-state, high gain small devices » > p

Margin to

3. Boundary physics evolved (G-9) disruptions +
a) ELMs disallowed in ITER -> Steady_state +

Transients disallowed in FNSF/Pilot/DEMO Reduced cost
b) Power exhaust could threaten fusion viability & schedule

& does not favor large size.
¢) Quiescent high-field SOL - locate RF launchers
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Cost &
schedule
G-8
G10-15
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Size has risk: Lesson from fission & ITER
Minimize volume of first nuclear devices to assure

timely development of physics and technology

— > 3
. S h.l pp:ng_po_rt o I’I,‘,ER . Scale factor
Design parameter Pilot” Fission | “Pilot” Fusion ITER/Shippingport
Plant ca. 1954 | Plant ca. 2006 5
Pthermal (MW) 236 500 X2-5
~1600
Core volume (m?3 x27
volume (i) 60 (shield + TF)
Cost (2012 US B$) 0.6 ~ 30 x50
Cost / Core volume
P 10 18 2
E'onstl’”’uction time to 3.3 ~28 x 8
burn” (years)

e JET ~100 m? took < 5 years to construct

e FIRE B~10T burned at right size, but

pulsed due to copper coils
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G-8

Superconductors evolved Astonishing critical current of new

high-temperature superconductors (HTS) at B
provides possibility to ~double loss-free B field
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>20 T

pea

103
* Sub-cooled tapes at )
~20 K provides Je,crit
operational margin (MA/m?2)
to superconductor’. 102
e Limitation becomes o

the structural stress

rather than .08
Stressin
superconductor. Structure 0.6
(GPa)
* Tapes allow joints.
0.2

»
’ “
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normal

HIS (YBCO tape)

Nb3$n

......................

superconducting

high-field target
for compact SS

moderate field,

Iarge device fusion devices
T Nb-Sn operating space Y
__________ (eg.ITER) N _O_,f'f?l________.

in stainless steel

high-field target
primarily limited by stress

12 14 16 18 20 22
Maximum field on coil, Bpeak (Tesla)
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Cost &

schedule Known physics scaling + Superconductor B ., >20 T >
G-4 High-gain burning plasma compact size & Steady state!
NIGT
H P . 2 2
GainnT 7, ~ P R p g o g | i PY€ s Power
q- S, q: density
FIRE /w FIRE2 ARCu.14 ARC /w HTS
copper coils R (m) 514 39 supeructor
B, (T) 10 9.2
Q, >10 >10
Steady-
state No Yes
Triti
brele:;nmg No Yes
Qelectric 0 ~4




gf,f;j;le B,~10 T, compact SC HTS tokamak enables more realistic

gé g;f high-Q, steady-state option by providing margin
to intrinsic disruption, control & operation limits
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Capital & Operating Nuclear Disruption damage
Costs / Economics  mission relative to ITER
A A , A ‘ Operational limit diagram
| I |

Pn Kink limit
t - In
> si:?ey BO R Pelec Q S (WVV;“S/)S 1/g*=1/2
tokamak (T (m) | (MW) P Mm_‘;V (il ITER o ((\g()\
ARIES ¢ RiEsar o
AT 581 52| +1000 | 44 | 3.3 2.5 P i If-fSSl_er
SC-NbSn Bootstra Imit
fraction PN~3
ARCY 1 95133 +230 | 14| 22 1.2 o
SC-HTS | °° = . .
Density
FNSF- - N limit
+ VDE limit f-=1
AT | 55|27 -600 |2.6] 1.6 1 /s N
Copper |
H
Electrical cost’3 nl 7, ~ 'BN > R'°B’
~250-500 M$/FPY q-
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G-9

Heat exhaust critical to the viability of all FNSF/Pilot designs
New edge physics favors small size + high gain = high B
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Neutron (1+ 5/ Qp) , Evolved |,
s s heat ~ neutron ~ R AC] ~ edge 4
mission 4 B o
&é 4 Pneuuon/s“‘,a" Allowable ¢ phySlcs Ej
= average e
£? R e
E 1 - h heat 2
4 q R ‘
Sos| %
nf b Sdiv="10% Swall 1
1 10 100
Fusion gain Qp
FNSF design Near-term
challenge Edge physics
v
Innovative
~RB@+ ) |
i > /QP solutions at
reactor-
matched
B, q//

US Leadership opportunity

V% =
f‘\&&'

LaBombard




G-2

G-7 Efficient RF current drive is synergistic with high-B &
critical to developing robust steady-state in tokamaks
Higher LHCD Quiescent PMI s | Control current profile
efficiency at high field high-field-side RF at small R, T~12 keV
launchers for optimized AT/3-/4
1 4 ' ' ' 25 T T T
0.8 | Moy (A/W/M?) A @ % ° 2_---3& ARC
0.6 "
0.4 f% of 1ALF{(:-
0.2

ce

pe

5 10 15
Local B (T)

>

Iep/I~37% & Q,~ 15

Compels near-term research in high-field & inside launch RF. | R. Parker
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?;I‘fo FNSF mission favors demountable coils for modular replacement

G-13 Finite resistance HTS joints = minimal P, = Pilot option
G-]5 ° ° ° ° . . oge
T US Leadership opportunity in configuration & maintainability

Conceptual FNSF designs
R/a=1.7 R/a=3.5

ARC: Resistive joints /w
7
Copper FNSF-ST® COPPer FNSF-AT HTS superconductors’/
PCOi]~4OO MW Coil PCOi1~6OO MW Coil PcoiIN 1 MW
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New HTS superconductors + integrated high-B physics
enable an innovative strategic vision for

US leadership in accelerated fusion energy development

||
Gaps

G-8 High-B magnets

Next 10 years

HTS high B ;> 20 T

G-2 Integrated steady-state &
boundary in burning plasma

HTS magnet R&D Superconductor coils

Minervini: HTS magnets

High-B physics

G-4 Control at high Q,

G-5 Predict & avoid damaging
off-normal events

Parker
RF current
drive

G-7 RF launchers & coupling

G-9 Tame PMI & heat exhaust

G-10-15 Integrated fusion
materials & components

Steady-state

Compact
FNSF/Pilot
LaBombard
PMI & heat N /
exhaust T
HTS joints & | | Demountable HTS coils &
Blanket R&D Modular replacement
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Backup materials
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National ADX and HTS magnet and ADX
initiatives are aligned and timely to the OFES

i)

Burning Plasma Science mission

LHCD & ICRF

PMI & coupling

profile control

Foundations Year 1-3 Year 4-7 Year 8-10 FNSF options
Transport Hye OK, no X-point MARFE Disruptivity vs.
erformance
Stability sta]?ilgii;yﬁi)z d passessment
Wave-particle Design HFS launch: | Install, assess High np, j Valid RF model

& launchers

Design divertors | Install divertors, Integratgd a/ Heat exha.ust/
PMI PMI diaenostics //vs. B phvsics PMI solution @ | PMI solutions
& Vs B Py high pressure Solid vs liquid
Long Pulse
Pl tainment CD efficiency | Disruption rates | Current control
asma sustainme f(B) on HFS away from limits toolkit
B-field sustainment Prototype HTS Wound coils /w | B>20 T jointed Cu vs. HTS
—Held sustainme conductor & joints joints, HEP coil demo Pilot?
Material Erosion resistance | Study: modular | High-T, high-Z, Modular
aterials high-Z PFC replacement low E, , divertor replacement
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~17 M$/y

~4 M$/y + demo coil




ADX provides a critically needed
near-term, small-scale step into the ITER/FNSF

NGT heat exhaust & PMI parameter range
so | Projected heat flux 500 |{// physics
40 7 = 400
30 4QO NPheatBO /R | 300 __Q// NPheatB/R
10 100
0 i B 0 - | ‘ - |
d QO N & & L & ¥ 0 N & & &K
NN E é"&,_g"’ N NG é:‘é"*
0.7
.6 ‘pthermal(MPa) B
0.5 -
g.g | 4 I Atomic &
0.2 - PMI
°-;;I--II, | physies
> 9O N & & & &
FESAC-SP Wh Ué\ Q\\\ ‘,«* ) ) ) Qeé ‘ 14




G-9

Heat exhaust critical to the viability of all FNSF/Pilot designs
New edge physics favors small size + high gain = high field

T
Evolved ,

Neutron | , (1+5/0,) 2 P 1
miSSiOn heat neutron 4 q B edge. . ‘ '.\.V
N PreatronSual "I physics _s 3¢
£ e E 4 SN
E v e ¢ <7 WA
Té .E i // R GO 0‘2 B034 M 0.6 l-J‘B
* 1 10 '”'16;:
Fusion gain Qp \L / \
FNSF design q,~RB (1 +5/ Qp) Near-term [l _‘ =
challenge v Edge physics A
nT T, ~ /3N_2HR1.333 Innovative ('
E% solutions at
(1 5 Q reactor- :
T ) matched % =
q,~ 13 - = \/\N\'
B B, q// \kﬁ:

US Leadership opportunity Lol




ARC: 9 Tesla “JET”, 250 MW net electricity
Steady-state tokamak far from disruptive limits

Nuclear
Fusion Power 525 MW
Blanket & Depth Liquid FLiBe > 0.8 m
Nihermat / Thtanket ~05 / ~900 K
Tritium breeding ratio 1.11

Plasma core

R/a /«k 33m/ 11m /1.8
B, 92T
Qos / Qmin 72 [ ~3
fn ! Hgg 259 /[ 2.7
Gygo : Bx Hog / o5 ~0.15
Greenwald fraction ~).6

RF current sustainment

CD Efficiency

> 0.4 10?° A/W/m?

Bootstrap fraction

63 %

FES

AL=-3F VWIIYLC

Margin to limits!
Scenario already achieved

In present tokamaks
16



ARC exploits two features of new SC:

N B oiimax~23 T + Tapes used for joints

Peak stress ~0.75 GPa
~30% margin for 316SS LN

- 0.5

1. Support ring, 2. Top TF leg
4. Mechanical joint 6. Epoxy
enforcement 7. Electrical joint

0

vonMises stress (GPa
FESAC-SP Whyte ( )
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ARC exploits two features of new SC:
N B oiimax~23 T + Tapes used for joints

1. Support ring, 2. Top TF leg
4. Mechanical joint 6. Epoxy
enforcement 7. Electrical joint

FESAC-SP Whyte

“Comb-style” TF resistive
joints are expected to lead

to ~ 1 MW, dissipation
|
%‘———— REBCO tape
REBCO tape Steel structure
—p 4
Joint
D —— ) Pressure
— 44—
— —

Close-up of joint area
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HTS high-field allows FNSF/Pilot fusion &
nuclear requirements with a modest integrated
NaT _ physics gain Gg, already achieved in AT plasmas

€
Hybrid scenarios ] Reversed shear scenarios ARIES-
Sips IAEA 2005, Zarnstorff ; SHIGD AT4
Demo workshop 2012 0.8 -
® JT-60U
N, 7 ® JET
o
é-: . Tore Supra
& —>e
3 o FNSF-
T S U Rl - N ITER reference (Q=10) A4
8 ° g”}l“ “ ITER advanced (Q=5)
de a5 -'-----‘0--- g T T T T
% o ® Weak reversal
®
e}
FTARC
® Strong reversal
2 4 6 0 2 4 6
duration/ty duration/ty
H
I’lT TE _ [))Nz R1.3B3
495
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ot B~10 T, SC compact tokamak provides realistic

oo high-gain steady-state option far from
NGT intrinsic operating and disruptive limits
Capital & Operating Nuclear & Power Steady-state &
C(ists Electlricity exhaust Disru[l)tions

Steady-
state B R Pelec Pf Pn /'S Pheat /

tokamak | (I | (m) | (MW) | (MW) | (MWm?) Q| 4p fos | K | By | Q= | for

n

ARC

sc.urs | 22|33 230 525 2.2 14 13 (063 18 |26 |48 | 0.65

ARIES
AT | 58|52 | 1000 | 1760 3.3 44 11 [092)| 22|54 (21| 095
SC-NbSn

FNSF-
AT 55127 | -600 230 1.6 2.6 29 1074 23|37 )28 0.63

Copper
\_'_I \ ' ) \ ' ]
Electrical cost Q,<5 - excess relative  Violation or within 10%
~ 500 M$/FPY heat loading per neutron of intrinsic limits:

f=1, Kk <54/A,no-wall P,
FESAC-SP Whyte kink q*~2, density [imit fGr =]



ACCOME has optimized large advantages of HFS-
LHCD + poloidal launch location near X-point

nss versus R

4 T T T T T T T T

2.0( ' .
:______/—\
1.5} . |
1of n// accessible ; 2
Ny : ! i
0.5 . .
E of
0.0 . . ) , ‘
2.5 2.6 2.7 2.8 2.9 3.0 31 N !
R(m) !
4 -
a _2 -
2- o
a
€, |
N _4 M 1 M 1 |
a
- 0 0 2 4 6
- R R(m)
0 2 4 6 8
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Optimized CD efficiency leads to substantial
control of AT current profile below no-wall 3 limit

~N
T

[*2)
4

Safety Factor, g
-~ (&)}
1

W
-
i

FESAC-SP Whyte

0 0.2 0.4 0.6 0.8 1
r/a
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HFS-LHCD+ high B: Excellent penetration at
Lawson criterion minimum <I'>~12 keV,
2T ~ doubled CD efficiency to standard scenarios

1012 €50.33 (D=12kev_ __(b) £=0.33 (D=18kev _(c) £=0.25 (T=12kev d) £20.45 (T)=12 kev

:,, LHCD windows:

L
} SS
- LFS launch
: HFS launch
B 10}
h .
£ 08|
€
w 0.6
c [
R 0.4
-
0.2

10 15 20
Maximum B on coil, Bcoil, max (T)

Py~ 0.8 MPa
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Small scale + demounting has
surprising synergistic benefits:
igd Reduced volume =
reduce cool/heat time to ~2-3 days
of structure
- Modular maintenance

A single, module is only /

replaced unit

(vacuum vessel + PFCs +
Built-in test stations
integrated off-site)

FESAC-SP Whyte



Small scale 2 Modular VV =
Low-risk immersion liquid blanket
(FLiBe) for FNSF

Property FLiBe Water
Melting Point (K) 732 273
Boiling Point (K) 1703 373
Density (kg/m?) 1940 1000
Specific Heat (kJ/kg/K) 24 4.2
Thermal Conductivity (W/m/K) 1 0.58
Viscosity (mPa-s) 6 1

Tritium Breeding Ratio: 1.14
Eliminate blanket solid waste

No “blanket” DPA limit

FESAC-SP Whyte
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FLiBe provides outstanding heat removal
capabilities at high T - thermal efficiency

Average Outlet 980

Temperature of 886 K Peak Temperature

of Blanket

Ha 960
\ A L 1 940

FLiBe Properties

* Low electrical conductivity
* Low toxicity

* Twice density of water

* Similar C, to water

* Similar viscosity to water

* Melting point : 732 K

Surface
Heat Flux
from Plasma

\l - 1 920

\l 1 900

ll L | 880

/| 860

. om 840

Inlet Velocity
of 0.1 m/s

T 800

Inlet Temperature
of 800 K

” R 1

820
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Lessons from ARC..
|psiq]

 Is NOT that ARC is the ultimate, best fusion reactor design..

e Or that every detail of ARC is settled and easily done...

e ARC and it innovations was the result of ~dozen MIT students
working for a semester+ , showing that it was feasible to produce high
gain, SS reactor at JET size

e The real lesson of ARC is that when you change the most fundamental
aspects of your MAGNETIC fusion device, i.e. scale, B strength and
coil configuration, you also fundamentally change the design options
and solutions open to you...

FESAC-SP Whyte 27



